Quasisymmetric and Schur expansions of cycle index polynomials
نویسندگان
چکیده
منابع مشابه
Quasisymmetric expansions of Schur-function plethysms
Let sμ denote a Schur symmetric function and Qα a fundamental quasisymmetric function. Explicit combinatorial formulas are developed for the fundamental quasisymmetric expansions of the plethysms sμ[sν ] and sμ[Qα], as well as for related plethysms defined by inequality conditions. The key tools for obtaining these expansions are new standardization and reading word constructions for matrices. ...
متن کاملFrom quasisymmetric expansions to Schur expansions via a modified inverse Kostka matrix
Every symmetric function f can be written uniquely as a linear combination of Schur functions, say f = ∑ λ xλsλ, and also as a linear combination of fundamental quasisymmetric functions, say f = ∑ α yαQα. For many choices of f arising in the theory of Macdonald polynomials and related areas, one knows the quasisymmetric coefficients yα and wishes to compute the Schur coefficients xλ. This paper...
متن کاملMultiplicity Free Schur, Skew Schur, and Quasisymmetric Schur Functions
In this paper we classify all Schur functions and skew Schur functions that are multiplicity free when expanded in the basis of fundamental quasisymmetric functions, termed F -multiplicity free. Combinatorially, this is equivalent to classifying all skew shapes whose standard Young tableaux have distinct descent sets. We then generalize our setting, and classify all F -multiplicity free quasisy...
متن کاملQuasisymmetric Schur functions
We introduce a new basis for the algebra of quasisymmetric functions that naturally partitions Schur functions, called quasisymmetric Schur functions. We describe their expansion in terms of fundamental quasisymmetric functions and determine when a quasisymmetric Schur function is equal to a fundamental quasisymmetric function. We conclude by describing a Pieri rule for quasisymmetric Schur fun...
متن کاملPositivity of Schur function expansions of Thom polynomials
Combining the approach to Thom polynomials via classifying spaces of singularities with the Fulton-Lazarsfeld theory of cone classes and positive polynomials for ample vector bundles, we show that the coefficients of the Schur function expansions of the Thom polynomials of stable singularities are nonnegative with positive sum.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2019
ISSN: 0012-365X
DOI: 10.1016/j.disc.2018.09.008